Chapter 26

Microbial Growth Control

Microbial Growth Control

- **Sterilization**
 - The killing or removal of all viable organisms within a growth medium

- **Inhibition**
 - Effectively limiting microbial growth

- **Decontamination**
 - The treatment of an object to make it safe to handle

- **Disinfection**
 - Directly targets the removal of all pathogens, not necessarily all microorganisms
Microbial Growth Control

- *Disinfectant*
 - Specialized chemical or physical agents called disinfectants can kill microorganisms or inhibit microbial growth.
 - e.g. chlorine gas and sodium hypochlorite solution are used to disinfect drinking water.

I. Physical Antimicrobial Control

- 26.1 Heat Sterilization
- 26.2 Radiation Sterilization
- 26.3 Filter Sterilization
26.1 Heat Sterilization

- **Heat sterilization** is the most widely used method of controlling microbial growth (Figure 26.1)
 - High temperatures *denature* macromolecules
 - Amount of time required to reduce viability tenfold is called the *decimal reduction time* (Figure 26.2)
- Some bacteria produce resistant cells called *endospores*
 - Can survive heat that would rapidly kill vegetative cells

Figure 26.1 The effect of temperature over time on the viability of a mesophilic bacterium

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Decimal Reduction Time (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C</td>
<td>3 min</td>
</tr>
<tr>
<td>60°C</td>
<td>12 min</td>
</tr>
<tr>
<td>50°C</td>
<td>42 min</td>
</tr>
</tbody>
</table>

The decimal reduction time, D, is the time at which only 10% of the original population of organisms remains viable at a given temperature. For 70°C, D = 3 min; for 60°C, D = 12 min; for 50°C, D = 42 min.
Data were obtained for decimal reduction times, D, at several different temperatures. For organism A, a typical mesophile, exposure to 110°C for less than 20 sec resulted in a decimal reduction, while for organism B, a thermophile, 10 min was required to achieve a decimal reduction.

26.1 Heat Sterilization

- The *autoclave* is a sealed device that uses steam under pressure (Figure 26.3)
 - Allows temperature of water to get above 100°C
 - Not the pressure that kills things, but the high temperature
- *Pasteurization* is the process of using precisely controlled heat to reduce the microbial load in heat-sensitive liquids
 - Does not kill all organisms, so it is different than sterilization
26.2 Radiation Sterilization

- Microwaves, UV, X-rays, gamma rays, and electrons can reduce microbial growth
- UV has sufficient energy to cause modifications and breaks in DNA
 - UV is useful for decontamination of surfaces (Figure 26.4)
 - Cannot penetrate solid, opaque, or light-absorbing surfaces
An UV light source prevents contamination of the hood when it is not in use. When in use, air is drawn into the cabinet through a HEPA filter. The filtered air inside the cabinet is exhausted out of the cabinet, preventing contamination of the inside of the hood. The cabinet provides a contaminant-free workspace for microbial and tissue culture manipulations.

26.2 Radiation Sterilization

- **Ionizing radiation**
 - Electromagnetic radiation that produce ions and other reactive molecules
 - Generates electrons, hydroxyl radicals, and hydride radicals
 - Some microorganisms are more resistant to radiation than others
 - Amount of energy required to reduce viability tenfold is analogous to D value (Figure 26.5)
26.2 Radiation Sterilization

- Sources of radiation include cathode ray tubes, X-rays, and radioactive nuclides
- Radiation is used for sterilization in the medical field and food industry
 - Radiation is approved by the WHO and is used in the USA for decontamination of foods particularly susceptible to microbial contamination
 - Hamburger, chicken, spices may all be irradiated
26.3 Filter Sterilization

- Filtration avoids the use of heat on sensitive liquids and gases
 - Pores of filter are too small for organisms to pass through
 - Pores allow liquid or gas to pass through
- **Depth filters**
 - HEPA filters (Figure 26.6a)
- **Membrane filters**
 - Function more like a sieve (Figure 26.6b and c)

Figure 26.6 Microbiological filters

Scanning electron micrograph showing the structure of (a) a depth filter, (b) a conventional membrane filter, and (c) a nucleopore filter
26.3 Filter Sterilization

• *Membrane filters* (cont’d)
 – Filtration can be accomplished by syringe, pump, or vacuum (Figure 26.7)
 – A type of membrane filter is the nucleation track (nucleopore) filter (Figure 26.8)
II. Chemical Antimicrobial Control

- 26.4 Chemical Growth Control
- 26.5 Chemical Antimicrobial Agents for External Use
26.4 Chemical Growth Control

- Antimicrobial agents can be classified as *bacteriostatic*, *bacteriocidal*, and *bacteriolytic* (Figure 26.9)

Figure 26.9a Bacteriostatic, bacteriocidal, and bacteriolytic antimicrobial agents

- Bacteriostatic agents are frequently inhibitors of protein synthesis and act by binding to ribosomes.
- If the concentration of the agent is lowered, the agent is released from the ribosome and growth resumes.
- Many antibiotics work by this mechanism.
• Bacteriocidal agents bind tightly to their cellular targets, are not removed by dilution, and kill the cell.
• The dead cells, however, are not destroyed, and total cell numbers, reflected by the turbidity of the culture, remain constant.

The turbidity of each culture, coupled with viable plate counts, establishes the relationship between viable and total cell counts.

• Some-cidal agents are also-lytic agents, killing by cell lysis and release of cytoplasmic contents.
• Lysis decreases the viable cell number and also the total cell number, shown by a decrease in culture turbidity.

Bacteriolytic agents include antibiotics that inhibit cell wall synthesis, such as penicillin, and chemicals such as detergents that rupture the cytoplasmic membrane.
26.4 Chemical Growth Control

- **Minimum inhibitory concentration (MIC)** is the smallest amount of an agent needed to inhibit growth of a microorganism (Figure 26.10)
 - Varies with the organism used, inoculum size, temp, pH, etc.
- **Disc diffusion assay**
 - Antimicrobial agent added to filter paper disc
 - MIC is reached at some distance
 - **Zone of inhibition**
 - Area of no growth around disc

![Figure 26.10 Antimicrobial agent susceptibility assay using dilution methods](image_url)

The assay defines the minimum inhibitory concentration (MIC). A series of increasing concentrations of antimicrobial agent is prepared in the culture medium. Each tube is inoculated with a specific concentration of a test organism, followed by a defined incubation period. Growth, measured as turbidity, occurs in those tubes with antimicrobial agent concentrations below the MIC.
26.5 Chemical Antimicrobial Agents for External Use

- These antimicrobial agents can be divided into two categories
 - Products used to control microorganisms in commercial and industrial applications
 - Examples: chemicals in foods, air-conditioning cooling towers, textile and paper products, fuel tanks
 - Products designed to prevent growth of human pathogens in inanimate environments and on external body surfaces
 - *Sterilants, disinfectants, sanitizers, and antiseptics*
26.5 Chemical Antimicrobial Agents for External Use

• **Sterilants:** Chemical sterilants, also called sterilizers or sporicides, destroy all forms of microbial life, including endospores.
 – Chemical sterilants are used in situations where it is impractical to use heat or radiation for decontamination or sterilization.
 – Liquid sterilants such as a sodium hypochlorite solution or amylphenol are used for instruments that cannot withstand high temperatures or gas.

• Hospitals and laboratories, must be able to decontaminate and sterilize heat-sensitive materials, such as:
 – thermometers
 – lensed instruments
 – polyethylene tubing and
 – reusable medical equipment.
26.5 Chemical Antimicrobial Agents for External Use

• *Disinfectants*: are chemicals that kill microorganisms, but not necessarily endospores and are used on inanimate objects.
 – Disinfectants such as ethanol and cationic detergents are used to disinfect floors, tables, bench tops, walls, etc. and important for infection control in hospitals.
 – General disinfectants are used in households, swimming pools and water purification systems.

• *Sanitizers*: are agents that reduce, but may not eliminate, microbial numbers to levels considered to be safe.
 – Food contact sanitizers are widely used in the food industry to treat surfaces such as mixing and cooking equipment, dishes and utensils.
 – Non–food contact sanitizers are used to treat surfaces such as counters, floors, walls, carpets, and laundry.
26.5 Chemical Antimicrobial Agents for External Use

• **Antiseptics** and **germicides** are chemical agents that kill or inhibit growth of microorganisms and that are nontoxic enough to be applied to living tissues.

 – Most of the compounds in this category are used for handwashing or for treating surface wounds.
 – Certain antiseptics are also effective disinfectants; they are effective antimicrobial agents when applied to inanimate surfaces.

Figure 2 Handwashing

Handwashing is the easiest and one of the most important interventions to prevent pathogen spread in healthcare, home and laboratory settings. This handwash station is in a clinical laboratory.
26.5 Chemical Antimicrobial Agents for External Use

• Ethanol, is categorized as an antiseptic, but can also be a disinfectant.
• This depends on the concentration of ethanol used and the exposure time, with disinfection generally requiring higher ethanol concentrations and exposure times of several minutes.

26.5 Chemical Antimicrobial Agents for External Use

• Antimicrobial Efficacy
 – Several factors affect the efficacy of chemical antimicrobial agents.
 – For example, many disinfectants are neutralized by organic material.
 – These materials reduce effective disinfectant concentrations and microbial killing capacity.
26.5 Chemical Antimicrobial Agents for External Use

• Antimicrobial Efficacy (cont’d)
 – Pathogens are often encased in particles or grow in large numbers as biofilms, covering surfaces of tissue or medical devices with several layers of microbial cells.
 – Biofilms may slow or even completely prevent penetration of antimicrobial agents, reducing or negating their effectiveness.

• Antimicrobial Efficacy (cont’d)
 – Only sterilants are effective against bacterial endospores.
 – Endospores are much more resistant to other agents than are vegetative cells because of their low water availability and reduced metabolism.
 – *Mycobacterium tuberculosis*, the causal agent of tuberculosis, are resistant to disinfectants because of the waxy nature of their cell wall.
26.5 Chemical Antimicrobial Agents for External Use

<table>
<thead>
<tr>
<th>Industry</th>
<th>Chemicals</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Organic mercaptals, phenolics, and methylolthiazoline</td>
<td>To prevent microbe growth during manufacture</td>
</tr>
<tr>
<td>Leather</td>
<td>Heavy metals, phenolics</td>
<td>Antimicrobial agents prevent in the final product inhibit growth</td>
</tr>
<tr>
<td>Plastic</td>
<td>Cationic detergents</td>
<td>To prevent growth of bacteria on aqueous suspensions of plastics</td>
</tr>
<tr>
<td>Textile</td>
<td>Heavy metals, phenolics</td>
<td>To prevent microbial deterioration of fabrics, such as awnings and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tents, that are exposed in the environment</td>
</tr>
<tr>
<td>Wood</td>
<td>Metal salts; phenolics</td>
<td>To prevent deterioration of wooden structures</td>
</tr>
<tr>
<td>Metal working</td>
<td>Cationic detergents</td>
<td>To prevent growth of bacteria in aqueous cutting emulsions</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Mercaptals, phenolics, and cationic detergents</td>
<td>To prevent growth of bacteria during recovery and storage of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>petroleum and petroleum products</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>Chlorine, phenolics, and methylolthiazoline</td>
<td>To prevent growth of bacteria (for example, Legionella) in cooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>towers</td>
</tr>
<tr>
<td>Electrical power</td>
<td>Chlorine</td>
<td>To prevent growth of bacteria in condensers and cooling towers</td>
</tr>
<tr>
<td>Nuclear</td>
<td>Chlorine</td>
<td>To prevent growth of radiation-resistant bacteria in nuclear reactions</td>
</tr>
</tbody>
</table>

© 2012 Pearson Education, Inc.

26.5 Chemical Antimicrobial Agents for External Use

<table>
<thead>
<tr>
<th>Agent</th>
<th>Use</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol (60–65% ethanol or isopropanol in water)</td>
<td>Disinfectant for medical instruments and laboratory surfaces</td>
<td>Lipid solvent and protein denaturant</td>
</tr>
<tr>
<td>Cationic detergents (quaternary ammonium compounds, Lysozyme) and many related disinfectants</td>
<td>Disinfectant and sanitizer for medical instruments, food and dairy equipment</td>
<td>Interacts with phospholipids</td>
</tr>
<tr>
<td>Chlorine gas</td>
<td>Disinfectant for purification of water supplies</td>
<td>Oxidizing agent</td>
</tr>
<tr>
<td>Chlorine compounds (chloramines, sodium hypochlorites, sodium chlorite, chlorine dioxide)</td>
<td>Disinfectant and sanitizer for dairy and food industry equipment, and water supplies</td>
<td>Oxidizing agent</td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>Algicidal disinfectant in swimming pools and water supplies</td>
<td>Protein precipitant</td>
</tr>
<tr>
<td>Ethylene oxide (gas)</td>
<td>Sterilant for temperature-sensitive materials such as plastics and related instruments</td>
<td>Alkylating agent</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3–8% solution used as surface disinfectant; 5% formalin or 40% paraformaldehyde</td>
<td>Alkylating agent</td>
</tr>
<tr>
<td>Glutardialdehyde</td>
<td>2% solution used as high level disinfectant; commonly used formaldehyde in electron microscopy</td>
<td>Alkylating agent</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Vapor used as sanitant</td>
<td>Oxidizing agent</td>
</tr>
<tr>
<td>Isoxazole-containing compounds (in solution or work solutions)</td>
<td>Disinfectant for medical instruments and laboratory surfaces</td>
<td>Inhibits tyrosine residues</td>
</tr>
<tr>
<td>Mercuric derivatives</td>
<td>Disinfectant for laboratory surfaces</td>
<td>Combinsi with -SH groups</td>
</tr>
<tr>
<td>DPP (diphenylphosphorocyanide), zinc phoshoric acid, and lime</td>
<td>High-level disinfectant for medical instruments</td>
<td>Alkylating agent</td>
</tr>
<tr>
<td>Cis-</td>
<td>Disinfectant for drinking water</td>
<td>Strong oxidizing agent</td>
</tr>
<tr>
<td>Pernoxene acid</td>
<td>Solution used as high level disinfectant or aseptant</td>
<td>Strong oxidizing agent</td>
</tr>
<tr>
<td>Phenolic compounds</td>
<td>Disinfectant for laboratory surfaces</td>
<td>Protein denaturant</td>
</tr>
<tr>
<td>Peroxide (Pre-Poly®) containing peroxides and other detergents</td>
<td>General disinfectant for hospital surfaces</td>
<td>Protein denaturant</td>
</tr>
</tbody>
</table>

© 2012 Pearson Education, Inc.
III. Antimicrobial Agents Used *In Vivo*

- 26.6 Synthetic Antimicrobial Drugs
- 26.7 Naturally Occurring Antimicrobial Drugs: Antibiotics
- 26.8 \(\beta\)-Lactam Antibiotics: Penicillins and Cephalosporins
- 26.9 Antibiotics from Prokaryotes

Antimicrobial drugs are classified on the basis of
- Molecular structure
- Mechanism of action (Figure 26.12)
- Spectrum of antimicrobial activity (Figure 26.13)
Agents are classified according to their target structures in the bacterial cell.

26.6 Synthetic Antimicrobial Drugs

- Paul Ehrlich studied *selective toxicity* in the early 1900s
 - Selective toxicity is ability to inhibit or kill a pathogen without affecting the host
 - *Salvarsan* – one of the first antimicrobial drugs
- *Growth factor analogs* are structurally similar to growth factors but do not function in the cell
 - Analogs similar to vitamins, amino acids, and other compounds
Each year an estimated 10,000 metric tons of antimicrobial agents are manufactured worldwide. The β-lactam antibiotics include cephahalosporins (30%), penicillins (7%), and other β-lactams (15%). "Others" includes tetracyclines, aminoglycosides, and all other antimicrobial drugs.

26.7 Naturally Occurring Antimicrobial Drugs: Antibiotics

- Antibiotics are naturally produced antimicrobial agents
 - Less than 1% of known antibiotics are clinically useful
 - Can be modified to enhance efficacy (semisynthetic)
 - The susceptibility of microbes to different antibiotics varies greatly
 - Gram-positive and gram-negative bacteria vary in their sensitivity to antibiotics
 - Broad-spectrum antibiotics are effective against both groups of bacteria
26.8 \(\beta\)-Lactam Antibiotics: Penicillins and Cephalosporins

- \(\beta\)-Lactam antibiotics are one of the most important groups of antibiotics of all time
 - Include penicillins, cephalosporins, and cephamycins
 - Over half of all antibiotics used worldwide
- \textit{Penicillins}
 - Discovered by Alexander Fleming
 - Primarily effective against gram-positive bacteria
 - Some synthetic forms are effective against some gram-negative bacteria
 - Target cell wall synthesis

26.9 Antibiotics from Prokaryotes

- Many antibiotics effective against \textit{Bacteria} are also produced by \textit{Bacteria}
- These antibiotics include:
 - \textit{Aminoglycosides}
 - \textit{Macrolides}
 - \textit{Tetracyclines}
 - \textit{Daptomycin}
 - \textit{Platensimycin}
- They have major clinical applications